

Asymmetric Dimethylarginine (ADMA)

Paula Pereira ¹

¹ Specialist of Internal Medicine. Rio de Janeiro. Brazil

ISSN: 2995-7907

doi:10.5281/zenodo.10437591

To the Editor,

Asymmetric dimethylarginine (ADMA) has rapidly emerged as a promising and potentially transformative marker for cardiovascular risk assessment in recent years. Its intricate interplay with nitric oxide (NO) metabolism and its association with a plethora of cardiovascular pathologies warrant attention from both clinicians and researchers. This letter aims to shed light on the multifaceted role of ADMA in cardiovascular health and disease, highlighting its clinical relevance and future directions (1-4).

ADMA, a naturally occurring metabolite, functions as a potent competitive inhibitor of NO synthase, the enzyme responsible for NO production. NO, in turn, plays a crucial role in vascular tone regulation, endothelial function, and platelet aggregation. Elevated ADMA levels, therefore, contribute to endothelial dysfunction, characterized by impaired vasodilation and increased vascular resistance. This translates to a cascade of clinical manifestations, including hypertension, atherosclerosis, and ultimately, cardiovascular events (5-7).

The link between ADMA and a diverse range of cardiovascular conditions is well established. Chronic kidney disease, diabetes mellitus, preeclampsia, and hyperhomocysteinemia, among others, all demonstrate significant elevations in ADMA levels. Moreover, ADMA has been shown to be an independent predictor of adverse cardiovascular outcomes, including myocardial infarction, stroke, and cardiovascular mortality. This predictive power independent of traditional risk factors further underscores the clinical value of ADMA assessment (3-6).

Despite its increasing recognition, the clinical management of ADMA remains a challenge. While lifestyle modifications aimed at addressing underlying conditions like obesity and chronic kidney disease may show some benefit in modulating ADMA levels, effective pharmacological interventions are still in their infancy. Ongoing research exploring the use of arginine supplementation, L-citrulline therapy, and gene therapy

approaches holds promise for future therapeutic advances (1-3, 7).

In conclusion, ADMA has emerged as a powerful player in the cardiovascular risk landscape. Its ability to predict adverse outcomes, independent of traditional risk factors, holds significant clinical potential. Ongoing research efforts toward understanding its pathophysiological mechanisms and developing effective therapeutic strategies are crucial for translating this knowledge into improved clinical practice. We anticipate ADMA to become a routine part of our cardiovascular risk assessment armamentarium in the near future, guiding preventive strategies and paving the way for personalized medicine approaches in cardiovascular disease management.

REFERENCES

1. Wieczór AM, Wieczór R, Kulwas A, Rośc D. Asymmetric dimethylarginine and angiogenesis: biological significance. *Int Angiol.* 2018;37(6):431-436. doi:10.23736/S0392-9590.18.04017-8
2. Zhao WC, Li G, Huang CY, Jiang JL. Asymmetric dimethylarginine: An crucial regulator in tissue fibrosis. *Eur J Pharmacol.* 2019;854:54-61. doi:10.1016/j.ejphar.2019.03.055
3. Tain YL, Hsu CN. Toxic Dimethylarginines: Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA). *Toxins (Basel).* 2017;9(3):92. Published 2017 Mar 6. doi:10.3390/toxins9030092
4. Czarnecka A, Milewski K, Zielińska M. Asymmetric Dimethylarginine and Hepatic Encephalopathy: Cause, Effect or Association?. *Neurochem Res.* 2017;42(3):750-761. doi:10.1007/s11064-016-2111-x
5. Mangoni AA, Tommasi S, Sotgia S, et al. Asymmetric Dimethylarginine: a Key Player in the Pathophysiology of Endothelial Dysfunction, Vascular Inflammation and Atherosclerosis in Rheumatoid Arthritis?. *Curr Pharm Des.* 2021;27(18):2131-2140. doi:10.2174/1381612827666210106144247
6. Braun D, Schlossmann J, Haen E. Asymmetric dimethylarginine in psychiatric disorders. *Psychiatry Res.* 2021;300:113901. doi:10.1016/j.psychres.2021.113901
7. Brinkmann SJ, de Boer MC, Buijs N, van Leeuwen PA. Asymmetric dimethylarginine and critical illness. *Curr Opin Clin Nutr Metab Care.* 2014;17(1):90-97. doi:10.1097/MCO.0000000000000020